Likely to stop? Predicting Stopout in Massive Open Online Courses

نویسندگان

  • Colin Taylor
  • Kalyan Veeramachaneni
  • Una-May O'Reilly
چکیده

Understanding why students stopout will help in understanding how students learn in MOOCs. In this report, part of a 3 unit compendium, we describe how we build accurate predictive models of MOOC student stopout. We document a scalable, stopout prediction methodology, end to end, from raw source data to model analysis. We attempted to predict stopout for the Fall 2012 offering of 6.002x. This involved the meticulous and crowd-sourced engineering of over 25 predictive features extracted for thousands of students, the creation of temporal and nontemporal data representations for use in predictive modeling, the derivation of over 10 thousand models with a variety of state-ofthe-art machine learning techniques and the analysis of feature importance by examining over 70000 models. We found that stop out prediction is a tractable problem. Our models achieved an AUC (receiver operating characteristic area-under-the-curve) as high as 0.95 (and generally 0.88) when predicting one week in advance. Even with more difficult prediction problems, such as predicting stop out at the end of the course with only one weeks’ data, the models attained AUCs of 0.7.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer Learning for Predictive Models in Massive Open Online Courses

Data recorded while learners are interacting with Massive Open Online Courses (MOOC) platforms provide a unique opportunity to build predictive models that can help anticipate future behaviors and develop interventions. But since most of the useful predictive problems are defined for a real-time framework, using knowledge drawn from previous courses becomes crucial. To address this challenge, w...

متن کامل

Beyond Prediction: Towards Automatic Intervention in MOOC Student Stop-out

High attrition rates in massive open online courses (MOOCs) have motivated growing interest in the automatic detection of student “stopout”. Stopout classifiers can be used to orchestrate an intervention before students quit, and to survey students dynamically about why they ceased participation. In this paper we expand on existing stop-out detection research by (1) exploring important elements...

متن کامل

Beyond Prediction: First Steps Toward Automatic Intervention in MOOC Student Stopout

High attrition rates in massive open online courses (MOOCs) have motivated growing interest in the automatic detection of student “stopout”. Stopout classifiers can be used to orchestrate an intervention before students quit, and to survey students dynamically about why they ceased participation. In this paper we expand on existing stop-out detection research by (1) exploring important elements...

متن کامل

Towards Feature Engineering at Scale for Data from Massive Open Online Courses

We examine the process of engineering features for developing models that improve our understanding of learners’ online behavior in MOOCs. Because feature engineering relies so heavily on human insight, we argue that extra effort should be made to engage the crowd for feature proposals and even their operationalization. We show two approaches where we have started to engage the crowd. We also s...

متن کامل

The Potentiality of Dynamic Assessment in Massive Open Online Courses (MOOCs): The Case of Listening Comprehension MOOCs

Massive Open Online Courses (MOOCs) as a new shaking educational development provide the scene for achieving social inclusion and dissemination of knowledge. Anyhow, facilitating network learning experiences through creating an adaptive learning environment can pave the way for this open and energetic way to learning. The present study aimed to explore the possible role of Dynamic Assessment (D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1408.3382  شماره 

صفحات  -

تاریخ انتشار 2014